Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding.

نویسندگان

  • Jae-Hyeon Cho
  • Gail V W Johnson
چکیده

Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and unprimed epitopes and how this impacts tau function, the R96A mutant of GSK3beta was used, a mutation that prevents phosphorylation of substrates at primed sites. Both GSK3beta and GSK3beta-R96A phosphorylated tau efficiently in situ. However, expression of GSK3beta-R96A resulted in significantly less phosphorylation of tau at primed sites compared with GSK3beta. Conversely, GSK3beta-R96A phosphorylated unprimed tau sites to a significantly greater extent than GSK3beta. Prephosphorylating tau with cdk5/p25 impaired the ability of GSK3beta-R96A to phosphorylate tau, whereas GSK3beta-R96A phosphorylated recombinant tau to a significantly greater extent than GSK3beta. Moreover, the amount of tau associated with microtubules was reduced by overexpression of GSK3beta but only when tau was phosphorylated at primed sites, as phosphorylation of tau by GSK3beta-R96A did not negatively regulate the association of tau with microtubules. These results demonstrate that GSK3beta-mediated phosphorylation of tau at primed sites plays a more significant role in regulating the interaction of tau with microtubules than phosphorylation at unprimed epitopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of tau by glycogen synthase kinase 3beta affects the ability of tau to promote microtubule self-assembly.

To study the effects of phosphorylation by glycogen synthase kinase-3beta (GSK-3beta) on the ability of the microtubule-associated protein tau to promote microtubule self-assembly, tau isoform 1 (foetal tau) and three mutant forms of this tau isoform were investigated. The three mutant forms of tau had the following serine residues, known to be phosphorylated by GSK-3, replaced with alanine res...

متن کامل

Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2.

MARK/Par-1, a kinase family with diverse functions particularly in inducing cell polarity, can phosphorylate microtubule-associated proteins in their repeat domain and cause their detachment from microtubules, and thereby microtubule destabilization. Because of its role in abnormal phosphorylation of the Tau protein in Alzheimer disease, we searched for regulatory kinases. MARK family kinases c...

متن کامل

Dissociation of tau toxicity and phosphorylation: role of GSK-3β, MARK and Cdk5 in a Drosophila model

Hyperphosphorylation of tau at multiple sites has been implicated in the formation of neurofibrillary tangles in Alzheimer's disease; however, the relationship between toxicity and phosphorylation of tau has not been clearly elucidated. Putative tau kinases that play a role in such phosphorylation events include the proline-directed kinases glycogen synthase kinase-3beta (GSK-3beta) and cyclin-...

متن کامل

Phosphorylation of tau protein by recombinant GSK-3beta: pronounced phosphorylation at select Ser/Thr-Pro motifs but no phosphorylation at Ser262 in the repeat domain.

Glycogen synthase kinase-3beta (GSK-3beta) has been described as a proline-directed kinase which phosphorylates tau protein at several sites that are elevated in Alzheimer paired helical filaments. However, it has been claimed that GSK-3beta can also phosphorylate the non-proline-directed KXGS motifs in the presence of heparin, including Ser262 in the repeat domain of tau, which could induce th...

متن کامل

Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization.

The microtubule-associated protein tau, in a hyperphosphorylated form, aggregates into insoluble paired-helical filaments (PHFs) in Alzheimer's disease (AD) and other tauopathies. In AD, there is approximately 8 mol of phosphate per mole of tau distributed among approximately 30 PHF phosphorylation sites as compared to 2-3 mol of phosphate per mole in normal brain. In AD, kinases such as glycog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2003